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1. Introduction

The transport phenomenon in many engineering applications is dominated by multi-component diffu-
sion. Examples include low-pressure chemical vapor deposition, mass transport in gas diffusion layers in
fuel cells, and transport of chemicals in biomedical devices. With increasing interest in small-scale devices,
diffusion dominated (i.e., low Peclet number) transport is likely to become more important in engineering
applications of the next generation.

Unlike in binary systems (consisting of two species), diffusion of a certain species in a multi-component
system is dictated not only by its own concentration gradient but also by the concentration gradient of the
other species in the system [1,2]. This results in a system of strongly coupled nonlinear second-order elliptic
partial differential equations. In the case of binary systems, or in the case of dilute mixtures wherein a cer-
tain ‘‘reference’’ species constitute most of the mixture, these equations become segregated, or are only
weakly coupled [1,2]. For concentrated non-binary mixtures, segregation of the governing equations cannot
be performed naturally, and is performed artificially only to make the system of equations amenable to
numerical solution.

Segregated solution of the governing equations, wherein only the self-diffusion operator is treated implic-
itly, while the diffusion due to the other species is treated explicitly, results in an iterative algorithm whose
convergence depends on the strategy used to conserve overall mass. In this short note, it is shown that if the
mass fraction summation criterion (i.e., mass fractions of species summing to unity) is imposed explicitly,
and if the transport properties are not held constant, the convergence of this semi-implicit system of equa-
tions requires under-relaxation even for one-dimensional calculations. For multi-dimensional problems,
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Nomenclature

Dkn ordinary multi-component diffusion coefficient tensor (m2/s)
Dkn binary diffusion coefficient tensor (m2/s)
Jk mass diffusion flux of kth species (kg/m2/s)
M mixture molecular weight (kg/kmol)
Mk molecular weight of kth species (kg/kmol)
n̂ unit surface normal
N number of species
NC number of cells (or finite volumes)
_Sk production rate of the kth species due to chemical reaction (kg/m3/s)
U fluid velocity vector (m/s)
Xk mole fraction of kth species
Yk mass fraction of kth species

Greek

a under-relaxation factor
q mixture density (kg/m3)
Ckn transformed diffusion coefficient tensor (m2/s) (Eq. (8))
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where the spatial operators have to be additionally split to enable use of iterative solvers, convergence is not
guaranteed even with severe under-relaxation, and is dependent on the mesh size. It is also shown that indi-
rect imposition of the mass fraction summation criterion by normalizing the calculated mass fractions by
their sum results in an iterative algorithm that is stable. Since direct imposition of the mass fraction sum-
mation criterion is often desirable or necessary for more complex reacting flow calculations, a coupled fully
implicit solution technique is proposed and demonstrated. It is shown that the new fully implicit procedure
is unconditionally stable without under-relaxation even if the mass fraction summation constraint is
imposed directly.
2. Governing equations

The equation governing the transport of species in a multi-component system is the generalized advec-
tion–diffusion species conservation equation [3]
o

ot
ðqY kÞ þ r � ðqUY kÞ ¼ �r � Jk þ _Sk 8k ¼ 1; 2; . . . ;N ; ð1Þ
where q is the mixture density, Yk is the mass fraction of the kth species, U is mass-averaged bulk fluid
velocity vector, Jk is the mass diffusion flux of the kth species, and _Sk is the production rate of the kth
species due to chemical reactions. In addition, overall mass conservation (or continuity) must be
satisfied
o

ot
ðqÞ þ r � ðqUÞ ¼ 0 ð2Þ
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Eq. (2) can be derived from Eq. (1) if and only if the following two constraints are satisfied:
At any point in space :
XN
k¼1

Y k ¼ 1; ð3Þ

At any arbitrary cutting plane :
XN
k¼1

Jk � n̂ ¼ 0; ð4Þ
where n̂ is the surface normal to the cutting plane in question. Eq. (3) is generally enforced either by solving
only N � 1 equations from the set in Eq. (1), and then using Eq. (3) directly to determine the mass fraction
of the last species, or by normalizing the calculated mass fractions by their sum, resulting in an indirect
correction strategy. Satisfaction of the second constraint, given in Eq. (4), is far more complex and requires
further considerations.

In a binary system, consisting of species A and B, the diffusion flux is accurately described by the Fick�s
law of diffusion [1]
JA ¼ �qDABrY A; JB ¼ �qDBArY B; ð5Þ

where DAB is the binary diffusion coefficient of species A into B, and is equal to DBA, which is the binary
diffusion coefficient of species B into A. Using the mass fraction summation constraint (Eq. (3)), it can be
readily shown that JA = �JB, i.e., Eq. (4) is automatically obeyed. Thus, in a binary system, species diffu-
sion is dictated by its own concentration gradient only, and the individual species transport equations can
be easily segregated.

In a multi-component system, Eq. (4) cannot be satisfied by expressing the mass flux using Fick�s law. In
such systems, diffusion is best described by the Stefan–Maxwell equation [1], which implicitly relates molar
fluxes of species to mole fraction gradients. This relationship has been formulated in such a manner that Eq.
(4) is satisfied for an arbitrary multi-component system. For computational fluid dynamics (CFD) calcula-
tions, it is advantageous to recast the Stefan–Maxwell equations in terms of mass fraction since mass is con-
served in the system. For a perfect mixture, the mass diffusion flux in multi-component systems is written as
[2,4]
Jk ¼ �q
Mk

M2

XN
n¼1

MnDknrXn; ð6Þ
where M is the mixture molecular weight, Mk is the molecular weight of the kth species, Xk is the mole frac-
tion of the kth species, and Dkn is the ordinary multi-component diffusion coefficient tensor [1,2], which is
different from the binary diffusion coefficient Dkn. Specifically, while the binary diffusion coefficients are
independent of the mole fractions, the ordinary multi-component diffusion coefficients are strong nonlinear
functions of the mole fractions. Also, it is worth noting that Dkk = 0, but Dkn 6¼ Dnk. The ordinary multi-
component diffusion coefficients can be computed using well-known relationships [2,5,6]. Using the conver-
sion between mass and mole fraction, Y k ¼ XkMk

M , Eq. (6) may be recast [4] into a form where the dependent
variable is not the mole fraction but the mass fraction
Jk ¼ �q
XN
n¼1

CknrY n; ð7Þ
where Ckn is a new tensor, written as [4]
½C� ¼ � 1

M2
½M �½D�½M �½C�. ð8Þ
In Eq. (8), [M] = diag[M1, M2, . . . ,MN], [D] is the matrix notation for the ordinary multi-component
diffusion tensor Dkn, and [C] the Jacobian of the transformation between mass and mole fraction, and is
written as
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Ckn ¼ dkn � Y k
M
Mk

� �
M
Mn

; ð9Þ
where dkn is the Kronecker delta. In the absence of advection and reaction sources, Eq. (1), at steady-state,
becomes
r � Jk ¼ �r � q
XN
n¼1

CknrY n

" #
¼ 0 8k ¼ 1; 2; . . . ;N . ð10Þ
It is clear that Eq. (10) represents a system of coupled second-order partial differential equations. Further-
more, since Ckn and q are both functions of the mass fractions, this system of equations is nonlinear. The
boundary conditions for Eq. (10) will depend on the problem at hand, and will be discussed further in later
sections when specific examples are considered. It has been shown by Wangard et al. [4] that the properties
of the tensor Ckn are such that the mass fraction summation criterion (Eq. (3)) is automatically satisfied
provided Eq. (10) is solved exactly.
3. Analysis and results

One common approach for solving Eq. (10) is a semi-implicit approach, in which Eq. (10) is first re-
written as
r � qCkkrY k½ � ¼ �r � q
XN
n¼1
n6¼k

CknrY n

2
664

3
775

�

8k ¼ 1; 2; . . . ;N ; ð11Þ
where it is seen that only the self-diffusion operator is retained on the left-hand side of the equation and
treated implicitly, while the remaining terms are simply treated as sources, and explicitly calculated using
old iteration values, as indicated by the superscript ‘‘*’’ on the right-hand side term. The resulting set of
equations can be solved sequentially after appropriate spatial discretization, although iterations (so-called
outer iterations) will be necessary to resolve the coupling between the mass fractions even if the properties
(Ckn and q) are held constant and a direct solver is used. Wangard et al. [4] have shown using discrete Fou-
rier analysis of the errors that the maximum eigenvalue of the iteration matrix, resulting from such a semi-
implicit treatment, never exceeds unity, implying that the approach is unconditionally stable. Although not
shown here for the sake of brevity, our calculations confirmed these findings. However, Wangard et al. [4]
performed their analysis under the assumption that the properties are constant. Such an assumption not
only linearizes the equations, but also changes the eigenvalues of the system because the properties are
not allowed to vary spatially. In practice, as discussed earlier, both Ckn and q are strong functions of the
mass-fractions, making the governing set of equations nonlinear. Under the circumstances, discrete Fourier
analysis cannot be performed, and the behavior of the system of equations can only be investigated through
trial-and-error. Wangard et al. [4] also noted that the segregated solution approach results in an error in the
mass fraction sum (i.e., a deviation from unity), which, in a time-marching formulation with constant prop-
erties, scales as the time step used. Thus, despite the automatic mass conservation property of the tensor Ckn

[4], the satisfaction of Eq. (3) is not automatically guaranteed using the semi-implicit segregated approach,
and explicit strategies must be implemented in the overall numerical procedure to satisfy Eq. (3).

In order to test these practical numerical issues associated with the semi-implicit scheme, a simple one-
dimensional test case was considered. The system consisted of three species, namely H2, H2O, and N2. The
one-dimensional domain considered was 0.1 m long, and the temperature of the domain was assumed to be
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uniform and fixed at 300 K. The prescribed mass fractions of the three species at the left boundary were
[H2, H2O, N2] = [0.6, 0.4, 0.0], while that at the right boundary were [H2, H2O, N2] = [0.0, 0.6, 0.4]. The
governing equations were discretized using a conservative finite-volume approach, in which central differ-
encing on a uniform mesh was used to treat diffusion. The resulting discrete equations were solved using a
direct tri-diagonal matrix solver. Two different strategies were used for overall mass correction (i.e., for
enforcing Eq. (3)):

Strategy 1. Only N � 1 equations from the equation set shown in Eq. (11) were solved. The mass fraction
of the final species was obtained using Eq. (3).

Strategy 2. All N equations from the equation set shown in Eq. (11) were solved. At each iteration, the
mass fractions were corrected by scaling with their sum.

Using Strategy 1, it was impossible to obtain convergence with such a semi-implicit scheme (Fig. 1) with-
out under-relaxing the species mass fractions (i.e., Y = Y* + aDY), where a is the under-relaxation factor,
and DY is the change in mass fraction between the previous and current iteration. On the other hand, using
Strategy 2, it was possible to attain convergence without the use of any under-relaxation (Fig. 1). Without
the use of either of the above two strategies, although convergence was easily obtained (not shown), the
summation of the mass fractions were found to be grossly erroneous, with errors larger than 100% at some
spatial locations. Thus, the conservation properties of the tensor, Ckn, as discussed by Wangard et al. [4], is
manifested only if the set of species conservation equations are solved simultaneously, rather than in seg-
regated fashion.

In computations involving chemical reactions, scaling of the mass fractions may lead to undesirable gain
or loss of reactants during the iteration process, leading to oscillations in the convergence and/or unphys-
ical results. In such a scenario, direct imposition of Eq. (3) (Strategy 1) is preferable over scaling (Strategy
2). In order to achieve this goal, a coupled fully implicit procedure is proposed. In this fully implicit ap-
proach, finite-volume integration is directly performed in Eq. (10) without any additional rearrangement
of the terms. For the simple one-dimensional case considered here, after finite-volume integration and
discretization of the flux terms, the following equation is obtained:
Fig. 1. Convergence of the multi-component diffusion equations for various under-relaxation factors using segregated solution. The
residuals shown are for H2. 80 cells were used for these computations. The residual of each species is defined as the l2norm of the mass
imbalance of that species.
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XN
n¼1

bkn;e þ bkn;w

� �
Y n;O � bkn;eY n;E � bkn;wY n;W

� �
¼ 0 8k ¼ 1; 2; . . .N � 1; ð12Þ
where the subscripts ‘‘E’’, ‘‘W’’, ‘‘O’’, ‘‘e’’, and ‘‘w’’ carry their usual meanings, and bkn = qCkn. Eq. (12) rep-
resents a set of N � 1 coupled equations. In conjunction with Eq. (3), it can be written in matrix form as
�

b11;e b12;e � � � b1N ;e

..

. ..
. ..

. ..
.

bN�1;1;e � � � � � � bN�1;N ;e

0 � � � � � � 0

2
66664

3
77775

Y 1;E

Y 2;E

..

.

Y N ;E

2
66664

3
77775�

b11;w b12;w � � � b1N ;w

..

. ..
. ..

. ..
.

bN�1;1;w � � � � � � bN�1;N ;w

0 � � � � � � 0

2
66664

3
77775

Y 1;W

Y 2;W

..

.

Y N ;W

2
66664

3
77775

þ

b11;e þ b11;w b12;e þ b12;w � � � b1N ;e þ b1N ;w

..

. ..
. ..

. ..
.

bN�1;1;e þ bN�1;1;w � � � � � � bN�1;N ;e þ bN�1;N ;w

1 � � � � � � 1

2
66664

3
77775

Y 1;0

Y 2;0

..

.

Y N ;O

2
66664

3
77775 ¼

0

..

.

0

1

2
66664

3
77775 ð13Þ
Eq. (13) represents a block tri-diagonal system of equations for the cells [1, 2, . . . , NC], where each element
of the tri-diagonal matrix is a N · N matrix itself. These element matrices are shown explicitly in Eq. (13)
for a representative interior node, O. In the case where the transport coefficient, bkn, is independent of the
mass fractions, a single inversion of this tri-diagonal block matrix system will yield the final solution for all
species and all cells. In the actual case, where bkn is dependent on the mass fractions, iterations will still be
necessary, since the governing equation is nonlinear. One other point of importance is the fact that the mass
fraction summation criterion (Eq. (3)) is in-built into the coupled solver, thereby enforcing it at each cell
and each iteration. It is to be noted that in this formulation, unlike the segregated solution approach,
the choice of the species for which the governing equation is not solved is arbitrary, and does not affect
either the accuracy or the convergence (not shown). This is because Eq. (3) is implemented implicitly within
the solver rather than as an explicit correction step after the governing equations for all the other species are
solved.

Computations were performed using the coupled fully implicit solver, and in each case, regardless of
mesh size, convergence was obtained within 10 global (outer) iterations. The insensitivity of the conver-
gence to mesh size is consistent with the fact that a direct solver is being used for this one-dimensional prob-
lem. A summary of the comparison between the fully implicit (coupled) method and the semi-implicit
(segregated) method using both strategies, mentioned earlier, is shown in Table 1. For the semi-implicit
method using Strategy 1, the best possible convergence results, which were obtained after several trial-
and-error runs, are shown only.

Two-dimensional calculations were undertaken next to further investigate relative strengths and weak-
nesses of the various methods. For two-dimensional calculations, the use of direct solvers is prohibitive due
to memory considerations, and the spatial operators in the independent directions have to be split (for both
1
arison of performance of the semi-implicit (segregated) and fully implicit (coupled) solution approach for a one-dimensional
tion

er of cells Iterations

Segregated solution (Strategy 1 with optimized a) Segregated solution (Strategy 2) Coupled solution

16 13 9
16 12 8
16 11 7
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methods) to enable use of iterative solvers. For this study, the alternating direction implicit (ADI) method
is chosen. The ADI method is chosen because it is a popular iterative solver for block-structured meshes,
and the formulation developed earlier for the fully implicit method is directly extensible to multi-dimen-
sional geometry with the ADI method. The geometry and boundary conditions for the two-dimensional
test problem are shown in Fig. 2. The chosen boundary conditions represent worst-case scenarios where
the mass fraction of each species will vary over the full realizable composition space.

In the case of the semi-implicit segregated solution approach using Strategy 1, convergence could only be
obtained within a reasonable number of iterations on a coarse 20 · 20 mesh when severe under-relaxation
was used (Fig. 3(a)). For a 40 · 40 mesh, convergence could only be attained after 100,000 iterations with
an under-relaxation factor of 0.08. For a 80 · 80 mesh, convergence could not be attained at all. Attempts
at improving the convergence by adjusting the number of inner iterations for the individual equations, or by
changing the order of solution of the species, did not succeed. In contrast, it was possible to attain smooth
convergence with the segregated solution approach using Strategy 2 (Fig. 3(b)), and the fully implicit cou-
pled solver in all cases (Fig. 4). The distributions of the various species are shown in Fig. 5. The behavior of
the convergence of the fully implicit coupled method is in direct agreement with the general convergence
behavior of the ADI method for a single equation. Since the contributions of two out of the four neighbor-
ing nodes are treated explicitly, the spectral radius increases with an increase in the number of cells, and the
convergence deteriorates. Several techniques, such as multi-grid methods and block correction [7], are avail-
able to remedy this situation, and can be applied over and above the proposed solution technique to
improve the convergence on finer meshes. In particular, the adaptation of the block matrix ADI method
to a multi-grid ADI procedure will require little effort.

The disadvantage of using the fully implicit coupled solution approach is that it requires more memory.
If NC is the number of cells in any one direction, the fully implicit procedure requires storage of
NC · 3 · N · N link coefficients if the ADI method is used. In contrast, the semi-implicit procedure requires
storage of only NC · 3 link coefficients. A few comments are warranted in this regard. Firstly, since the stor-
age scales as the number of cells in one direction only, the overall memory requirement is not very high even
for large three-dimensional calculations. For example, a three-dimensional calculation with 100 nodes in
each direction (i.e., 1 million total cells), and 20 species, will require storage of only 100 · 3 ·
20 · 20 = 1,200,000 numbers, which is equivalent to storage of the mass fraction of a single species, i.e.,
Fig. 2. Geometry and boundary conditions for the two-dimensional test problem.



Fig. 3. Convergence of the semi-implicit segregated solution method. The residuals shown are for H2: (a) Strategy 1 on a 20 · 20 mesh
with various under-relaxation factors; (b) Strategy 2 for various mesh sizes with no under-relaxation.

Fig. 4. Convergence of the fully implicit coupled solution method for several different mesh sizes and aspect ratios. The residuals
shown are for H2.
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relatively insignificant. Secondly, although the link coefficients for all the other species are not stored simul-
taneously in the semi-implicit method, they must still be calculated to evaluate the right-hand side of Eq.
(11). In other words, by not storing these link coefficients, computational effort is wasted since they have to
be calculated repeatedly during the solution of the individual species equations. Thus, simultaneous storage
of the link coefficients of all the species has additional benefits from the point of view of computational
efficiency. Finally, in order to address the stiffness and nonlinearity, coupled solution of the species conser-
vation equations is almost mandatory if complex finite-rate chemical reactions are considered, in which
case, the proposed coupled solver requires no additional memory, while being still able to impose the mass
conservation constraint directly.



Fig. 5. Species mass fraction distributions for the two-dimensional test problem, computed on a 80 · 80 mesh.
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4. Summary and conclusion

In a system consisting of more than two species, diffusion of a certain species is dictated not only by its
own concentration gradient, but also by the concentration gradient of the other species in the system. This
results in a set of strongly coupled nonlinear partial differential equations that cannot be segregated natu-
rally. If only the self-diffusion operator is treated implicitly, the stability of the resulting equations depends
on how the overall mass conservation constraint is imposed. If the mass conservation constraint (i.e., mass
fractions summing to unity) is imposed directly to obtain the mass fraction of one of the species without
solving its governing equation, the resulting algorithm is unstable. On the other hand, if the constraint
is imposed indirectly by scaling the calculated mass fractions by their sum after every iteration, the resulting
algorithm is stable, at least for the cases considered here. A fully implicit procedure has been presented to
circumvent this fickleness in the numerical algorithm, and it is found to be unconditionally stable. The
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proposed fully implicit coupled procedure requires little additional memory and can be used for computa-
tions of complex reacting flows with little additional effort. The proposed method is expected to be useful
for applications that involve low-speed (low Peclet number) reacting flows, as occurring in chemical vapor
deposition reactors, fuel cells, and micro-scale devices.
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